Skip to main content

Celonis Product Documentation

Tool Activation

The Tool Activation section is used to select which tools can be used by this Process Copilot to perform its intended task. This section includes a list of questions that you can answer about what you need the Process Copilot to be able to do. You can expand each question for more details and to see which tools are recommended for helping with the selected question. For more information on the individual tools available and how to configure them in YAML, refer to Configure tools using YAML.

Warning

Only select the tools that are required for your use case.

Note

Our recommendations:

  • If you are looking for fast access to data that exists in your Knowledge Model and want your answers shown in a table or chart, we recommend activating only items (2) and (5);

  • If you are looking for ad hoc calculations on top of your data or are looking to build a Process Copilot that performs a very specific task, we recommend activating only item (1);

  • We do not recommend activating items (1) and (2) together unless you are an expert user and are familiar with how to instruct a Process Copilot on when to use which tool.

Configure tools using the UI
  1. Click the Tool Activation section to expand it.

    tool_activation.png
  2. From the list of questions, click to expand any option that is relevant to your Process Copilot’s intended function. Expanding shows examples of the types of questions that can be answered and any relevant tools that will help with the Process Copilot’s purpose.

    tool_activation_options.png
  3. Use the checkboxes to select any tools you want to include with your Process Copilot.

    Note

    Selecting too many tools can lead to your Process Copilot being less accurate with its responses.

    tool_activation_selected.png
  4. Click the Save Changes button at the bottom once all tools have been selected.

  5. Once your tools have been selected, you can now define the intended task of this Process Copilot in the System Prompt section.

Configure tools using YAML

Tools are functions that Process Copilot can call to complete a task. Each tool has its own tool arguments and those arguments will differ between tools.

For most tools, you can activate them in your Process Copilot configuration without any arguments. When you do this, the arguments are filled out by the LLM based on what the user asked and the context from the system prompt.

Other times you might want to "fix" the tool behavior. For example, you might have the requirement from your customer to always display a fixed table with fixed columns and specific sorting when users ask for an "overview of invoices". In this example, you would create a customized instance of the display_table tool where you "fix" this behavior using arguments.

Warning

An alternative solution - but not recommended for this example - is to have an instance of the display_table function without arguments. In this case, you rely on the LLM to determine which columns to use. Writing guidance in the system prompt about which columns to use and what sorting behavior to apply is less reliable and efficient than instantiating a customized display_table tool.

Within your Process Copilot configuration, you can instantiate one tool multiple times with different configurations. For example, you can have a display_table tool with no arguments that is used for most questions and a second customized instance display_table_for_invoice_details that is used when users ask for invoice details. You can educate the LLM about when to use each instance by filling out the description argument in the customized instance of your tool.

There is an exception for the pql_tool and trigger_action_flow tools. These two tools always require a manual configuration of arguments.

Arguments

When you customize a tool by providing arguments, you don’t need to specify all of them. The unspecified arguments will be filled out by the LLM as usual. For example, with a display_table tool you can specify the columns but leave the caption, limit, order by and sorting order up to the LLM.

Customization by tool

Note

Customization of tools is currently only available using YAML.

Arguments that can be set on any  tool

All tools can be given:

  • description: Instructions to the LLM for when to use this tool.

  • unique_id: Mandatory when you instantiate the same tool multiple times.

  • active: true/false. If set to "false", your Process Copilot cannot use this tool.

Search data and disambiguate

Should not be customized.

Display table

This tool is needed when you want to display a table component (such as the one from Views) in answers.

Unique arguments for this tool are:

  • caption (str): The text shown above the table.

  • column_ids (list[str]):  The list of KPIs and record attribute ids of the table.

  • limit (int | None): The number of rows to display.

  • order_by (str | None): The column id to order the table by.

  • ascending (bool | None): Sort the data in ascending or descending order.

Example
- id: display_table
  description: Use this when users ask for the no touch rate per vendor.
  unique_id: vendor_no_touch_rate_table
  caption: The No Touch Rate per vendor.
  column_ids:
    - INVOICE.IDENTIFIER_AS_ATTRIBUTE
    - KPI_NO_TOUCH_RATE
  order_by: KPI_NO_TOUCH_RATE
  ascending: true 
Display chart

This tool is needed when you want to display a chart component.

Unique arguments for this tool are:

  • caption (str): The text shown above the chart.

  • x_axis_id (str): The record attribute id used on the x axis.

  • y_axis_id (list[str]): The list of record attribute or KPI ids used on the y axis. Use at most two values.

  • chart_type (list[str]): Either bar or line for every y_axis_id entry.

Example
 - id: display_chart
   x_axis_id: INVOICE.YEAR
   y_axis_id:
     - KPI_NO_TOUCH_RATE
   chart_type:
     - line
Display KPI

This tool is needed when you want to display a KPI list component.

Unique arguments for this tool are:

  • caption (str): The text shown above the KPI.

  • kpi_ids (list[str]): The list of KPI ids to display.

Example
- id: display_kpi
  kpi_ids:
    - KPI_NO_TOUCH_RATE
Get insights

This tool is needed when you want to answer a question like "How can I improve DPO?" and want to see Celonis-generated Insights.

Warning

Insights come from the Celonis recommendation engine and are the same insights that are generated in the Insight Explorer asset. For details about how these insights are generated, please refer to the Insight Explorer documentation.Insight Explorer Placeholder

Unique arguments for this tool are:

  • kpi (str): The KPI id for which you want to find insights.

  • field_ids (list[str]): List of record attribute ids related to the KPI.

Example
 - id: get_insights
   kpi: KPI_DPO
   field_ids:
     - O_CUSTOM_INVOICE.VENDOR
     - O_CUSTOM_INVOICE.DOCUMENT_TYPE
Get data

This tool is used when you have a use case that requires you to load data for the LLM to "see" prior to performing further analysis/tasks, such as by calling the Python tool to perform an ad-hoc calculation on the data it "got".

Note

This tool can retrieve a maximum of 500k rows of data from the data model.

Unique arguments for this tool are:

  • columns (list[str]): The list of KPIs and record attribute ids the tool loads.

Example
 - id: get_data
   columns:
     - MATERIAL_REPLENISHMENT_DATA.PLANT_NAME
     - MATERIAL_REPLENISHMENT_DATA.MATERIAL_NAME
     - MATERIAL_REPLENISHMENT_DATA.AMOUNT_IN_STOCK
Python

This tool is needed when you want your Process Copilot to do ad-hoc calculations in addition to what you have available in the Knowledge Model. This tool usually works together with the get_data tool since the LLM needs to "see" (get) the data first, then perform calculations.

Unique arguments for this tool are:

  • code (str): The Python code to execute.

  • require_get_data (bool): True if the data must be loaded before running this tool.

Example
 - id: python
   unique_id: square_otp_rate
   code: |
     otp_rate = df['KPI_VendorInvoiceItem_AVG_OnTimePaymentRate'].iloc[0]
     otp_rate_squared = otp_rate ** 2 print(f'The OTP rate is {otp_rate:.2%} and its square is {otp_rate_squared:.4%}')
Trigger Action Flows

Note

Must be customized.

This tool allows you to connect your Process Copilot to an existing Action Flow and instruct your Process Copilot on when to surface this action to users.

Unique arguments for this tool are:

  • description (str): The description of the Action Flow and what it does. This description is passed to the LLM to decide if it calls the Action Flow. You can also pass instructions here, but should keep those instructions short and precise.

  • Flow_hook_id (str):  hook id of the URL provided in the Action Flow.

  • flow_node_id (str):  Node_id of the Action Flow asset.

  • Flow_input_schema: The input schema of the Action Flow as configured in the first part. This configuration must match the webhook configuration, otherwise the Action Flow will not be executed correctly. The specification follows the OpenAI spec.

  • Flow_display_name (str):  A display name that is shown to the user to confirm executing the Action Flow.

Example
- id: trigger_action_flow
  unique_id: send_email
  description: Sends an email to a recipient given an email address and email body.
  flow_hook_id: 5rdzshdul653ogktg541mu0hhki13mrn
  flow_node_id: 5633193a-6dd0-48da-8db2-9ef2df221b9e
  flow_display_name: Sends email to user
  flow_input_schema:
    type: object
    required:
      - email
      - body
    properties:
      body:
        type: string
        description: The body of the email to send.
      email:
        type: string
        description: Email address to send an email to.
PQL tool

Note

Must be customized.

This tool is helpful for questions such as "Give me the current status of Invoice A" or "What’s going on with my Trade AB" where you want Process Copilot to pull in a large amount information (e.g., 20 columns) for one particular case to summarize it or to perform additional tasks on this information.

Something similar can be achieved with a combination of get_data and python, but we found that the orchestration of these tools and how they interact is a bit complex and the source of many model errors.

Example
- id: pql_tool
  columns:
    - id: INVOICES.INVOICE_NUMBER <- can specify IDs from KM
    - pql_template: <- or write custom PQL
        pql: '"invoices"."Invoice Value"'
        name: invoice value
  filters:
    - pql_template: <- PQL can have ${} variable place holders
        pql: FILTER "invoices"."Invoice Number" in ('${invoice_number}')
        name: Invoice Number Filter
  unique_id: get_invoice_by_id
  description: Get invoice information for a specific invoice number
  input_schema:
    properties:
      invoice_number: <- the variable placeholder becomes an LLM argument
        description: the invoice number you want to filter by.

In this above configuration we make a new tool with an argument for invoice_number that retrieves a table with invoice number and invoice value filtered to a specific invoice number that is inserted by the LLM.  When using this tool, the LLM simply runs get_invoice_by_id(‘INV-1001’) and retrieves the content.

The output of this tool is written into a data frame which can be used by python further or can be simply used by the LLM to provide a summary for the users.